Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
AAPS J ; 25(6): 102, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891356

RESUMEN

A crucial step in lead selection during drug development is accurate estimation and optimization of hepatic clearance using in vitro methods. However, current methods are limited by factors such as lack of physiological relevance, short culture/incubation times that are not consistent with drug exposure patterns in patients, use of drug absorbing materials, and evaporation during long-term incubation. To address these technological needs, we developed a novel milli-fluidic human liver tissue chip (LTC) that was designed with continuous media recirculation and optimized for hepatic cultures using human primary hepatocytes. Here, we characterized the LTC using a series of physiologically relevant metrics and test compounds to demonstrate that we could accurately predict the PK of both low- and high-clearance compounds. The non-biological characterization indicated that the cyclic olefin copolymer (COC)-based LTC exhibited negligible evaporation and minimal non-specific binding of drugs of varying ionic states and lipophilicity. Biologically, the LTC exhibited functional and polarized hepatic culture with sustained metabolic CYP activity for at least 15 days. This long-term culture was then used for drug clearance studies for low- and high-clearance compounds for at least 12 days, and clearance was estimated for a range of compounds with high in vitro-in vivo correlation (IVIVC). We also demonstrated that LTC can be induced by rifampicin, and the culture age had insignificant effect on depletion kinetic and predicted clearance value. Thus, we used advances in bioengineering to develop a novel purpose-built platform with high reproducibility and minimal variability to address unmet needs for PK applications.


Asunto(s)
Hepatocitos , Hígado , Humanos , Reproducibilidad de los Resultados , Tasa de Depuración Metabólica , Hígado/metabolismo , Hepatocitos/metabolismo , Modelos Biológicos , Farmacocinética
3.
Theranostics ; 13(14): 4905-4918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771785

RESUMEN

Background: The liver metastasis accompanied with the loss of liver function is one of the most common complications in patients with triple-negative breast cancers (TNBC). Lineage reprogramming, as a technique direct inducing the functional cell types from one lineage to another lineage without passing through an intermediate pluripotent stage, is promising in changing cell fates and overcoming the limitations of primary cells. However, most reprogramming techniques are derived from human fibroblasts, and whether cancer cells can be reversed into hepatocytes remains elusive. Methods: Herein, we simplify preparation of reprogramming reagents by expressing six transcriptional factors (HNF4A, FOXA2, FOXA3, ATF5, PROX1, and HNF1) from two lentiviral vectors, each expressing three factors. Then the virus was transduced into MDA-MB-231 cells to generated human induced hepatocyte-like cells (hiHeps) and single-cell sequencing was used to analyze the fate for the cells after reprogramming. Furthermore, we constructed a Liver-on-a-chip (LOC) model by bioprinting the Gelatin Methacryloyl hydrogel loaded with hepatocyte extracellular vesicles (GelMA-EV) bioink onto the microfluidic chip to assess the metastasis behavior of the reprogrammed TNBC cells under the 3D liver microenvironment in vitro. Results: The combination of the genes HNF4A, FOXA2, FOXA3, ATF5, PROX1 and HNF1A could reprogram MDA-MB-231 tumor cells into human-induced hepatocytes (hiHeps), limiting metastasis of these cells. Single-cell sequencing analysis showed that the oncogenes were significantly inhibited while the liver-specific genes were activated after lineage reprogramming. Finally, the constructed LOC model showed that the hepatic phenotypes of the reprogrammed cells could be observed, and the metastasis of embedded cancer cells could be inhibited under the liver microenvironment. Conclusion: Our findings demonstrate that reprogramming could be a promising method to produce hepatocytes and treat TNBC liver metastasis. And the LOC model could intimate the 3D liver microenvironment and assess the behavior of the reprogrammed TNBC cells.


Asunto(s)
Neoplasias Hepáticas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Hepatocitos/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Impresión Tridimensional , Dispositivos Laboratorio en un Chip , Microambiente Tumoral
4.
Acta Biomater ; 106: 124-135, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068138

RESUMEN

Current drug development techniques are expensive and inefficient, partially due to the use of preclinical models that do not accurately recapitulate in vivo drug efficacy and cytotoxicity. To address this challenge, we report on an integrated, in vitro multi-organoid system that enables parallel assessment of drug efficiency and toxicity on multiple 3D tissue organoids. Built in a low-cost, adhesive film-based microfluidic device, these miniaturized structures require less than 200 µL fluid volume and are amenable to both matrix-based 3D cell culture and spheroid aggregate integration, each supported with an in situ photocrosslinkable hyaluronic acid hydrogel. Here, we demonstrate this technology first with a three-organoid device consisting of liver, cardiac, and lung constructs. We show that these multiple tissue types can be kept in common circulation with high viability for 21 days and validate the platform by investigating liver metabolism of the prodrug capecitabine into 5-fluorouracil (5-FU) and observing downstream toxicity in lung and cardiac organoids. Then we expand the integrated system to accommodate six humanized constructs, including liver, cardiac, lung, endothelium, brain, and testes organoids. Following a 14-day incubation in common media, we demonstrate multi-tissue interactions by metabolizing the alkylating prodrug ifosfamide in the liver organoid to produce chloroacetaldehyde and induce downstream neurotoxicity. Our results establish an expandable, multi-organoid body-on-a-chip system that can be fabricated easily and used for the accurate characterization of drug interactions in vitro. STATEMENT OF SIGNIFICANCE: The use of 3-dimensional (3D) in vitro models in drug development has advanced over the past decade. However, with several exceptions, the majority of research studies using 3D in vitro models, such as organoids, employ single tissue types, in isolated environments with no "communication" between different tissues. This is a significant limiting factor because in the human body there is significant signaling between different cells, tissues, and organs. Here we employ a low-cost, adhesive film-based microfluidic device approach, paired with a versatile extracellular matrix-derived hyaluronic acid hydrogel to support integrated systems of 3 and 6 3D organoid and cell constructs. Moreover, we demonstrate an integrated response to drugs, in which downstream toxicity is dependent on the presence of liver organoids.


Asunto(s)
Capecitabina/metabolismo , Ifosfamida/metabolismo , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Organoides/metabolismo , Profármacos/metabolismo , Capecitabina/toxicidad , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Hialurónico/química , Hidrogeles/química , Ifosfamida/toxicidad , Organoides/efectos de los fármacos , Profármacos/toxicidad
5.
Artículo en Inglés | MEDLINE | ID: mdl-25570877

RESUMEN

A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus/sangre , Fotometría/métodos , Animales , Calibración , Capilares/fisiología , Diabetes Mellitus/patología , Eritrocitos/fisiología , Humanos , Luz , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Concentración Osmolar , Fotometría/normas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...